Abbreviations and Acronyms

A
- \(\alpha \): absorptivity
- \(A_c \): area of surface contact
- \(A_D \): Dubois body surface area
- ADEA: US Army Development and Employment Agency
- ADHD: attention-deficit hyperactivity disorder
- AEST: Australian Eastern Standard Time
- AFCCC: Air Force Combat Climatological Center
- AIS: Abbreviated Injury Scale
- AKO: Army Knowledge Online
- ALICE: All-Purpose Lightweight Individual-Carrying Equipment
- AMEDD: Army Medical Department
- ANAM: Automated Neuropsychological Assessment Metric
- ANSI: American National Standards Institute
- ARDEC: Armament, Research, Development, and Engineering Center
- ASHRAE: American Society of Heating, Refrigerating, and Air-Conditioning Engineers
- ATBM: Advanced Total Body Model
- ATO: Army Technology Objective
- AVP: arginine vasopressin
- BABTA: Body Armor Blunt Trauma Assessment
- BCC: basal cell carcinoma
- BDU: battle dress uniform
- BLDPS: Ballistic and Laser Protective Spectacles
- BOP: blast overpressure
- BTD: Blast Test Device

B
- B: body
- BABTA: Body Armor Blunt Trauma Assessment
- BCC: basal cell carcinoma
- BDU: battle dress uniform
- BLPs: Ballistic and Laser Protective Spectacles
- BOP: blast overpressure
- BTD: Blast Test Device

C
- C: convection
- \(c_b \): heat of body tissue
- CCO: crew coordination objective
- CET: corrected effective temperature
- CFID: computational fluid dynamics
- CHABA: Committee on Hearing, Bioacoustics, and Biomechanics
- CHO: carbohydrate
- CHPPM: US Army Center for Health Promotion and Preventive Medicine (US Army Public Health Command)
- CIVD: cold-induced vasodilation
- CMI: Cornell Medical Index
- CNS: central nervous system
- COIL: chemical oxygen iodine laser
- COZ: Contains Only Titanium and Zinc (sun care product produced by Fallene Ltd, King of Prussia, Pa)
- CPG: Clinical Practice Guideline
- CSI: cold strain index
- CSLO: confocal scanning laser ophthalmoscopy
- CTM: cold thermal model

D
- \(\Delta S \): change in storage
- \(\Delta T_b \): change in body temperature
- DA: data acquisition
- DCGS-A: Distributed Common Ground System–Army
- Diff: difference
- DLE: duration-limited exposure
- DLE1: duration-limited exposure based on heat storage
- DLE2: duration-limited exposure based on water depletion
- DoD: Department of Defense

E
- E: evaporative heat loss
- \(\varepsilon \): emissivity
- EEG: electroencephalogram
- EITACC: Equation Independent Transient Analysis Computer Code
- EKG: electrocardiogram
- ELTEP: Emerging Laser Threat Eye Protection
- EMG: electromyogram
- EMP: electromagnetic pulse
- EMS: eosinophilia–myalgia syndrome
- ERGO: Energy-Rich Glucose Optimized (drink)
- ESA: European Space Agency
- ET: effective temperature
- EXEMS '92: Experimental Study for the European Manned Space Infrastructure, 1992

F
- FACE: Functional Assessment of Care Environments
- FDA: US Food and Drug Administration
- FEM: finite element modeling
- FM 100 Hue: Farnsworth Munsell 100 Hue

G
- GABA: \(\gamma \)-aminobutyric acid
- GI: gastrointestinal
- GPS: Global Positioning System

H
- \(h_c \): convective heat transfer coefficient
- HD: Humidex
- \(h_r \): evaporative heat transfer coefficient
- HEAR: Health Enrollment/Evaluation Assessment Report
- HHA: Health Hazard Assessment
- HII: humidity index
- HIPPA: Health Insurance Portability and Accountability Act
- HMMWV: high-mobility multipurpose wheeled vehicle (or “Humvee”)
- \(H_r \): radiant field
- \(h_r \): radiative heat transfer coefficient
- HRA: Health Risk Appraisal
- HSADA: heat strain decision aid
- 5-HT1A: 5-hydroxytryptamine (serotonin) receptor 1A

I
- IAC: information analysis center
- ICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification
- ICDA: initial capability decision aid
- IDEF: Integrated Definition
- IED: improvised explosive device
- \(i_w \): water vapor permeability index
- IMETS: Integrated Meteorological System
- IND: Investigational New Drug
- IR: infrared
- IREQ: insulation index of required clothing
IRSF: intraretinal scar formation
ISEMSI '90: Isolation Study for the European Manned Space Infrastructure, 1990
ISS: Injury Severity Score
ITBM: Interim Total Body Model
IWEDA: Integrated Weather Effects Decision Aid
JLST: Joint US Army Materiel Command and the US Army Medical Research and Development Command Laser Safety Team (also known as J AMC-AMRDC LST)
JNLWD: Joint Non-Lethal Weapon Directorate
JNLWP: Joint Non-Lethal Weapon Program
K: conductance
kph: kilometers per hour
LAIR: Letterman Army Institute of Research
LBE: load-bearing equipment
LED: light-emitting diode
LFTP: Live Fire Test Program
LMB: Lasers on the Modern Battlefield (conference)
LR: Lewis relationship
LRRP: Long-Range Reconnaissance Patrol
M: metabolism
MAIS: Maximum Abbreviated Injury Scale
MANPRINT: Manpower and Personnel Integration
MEDEVAC: medical evacuation
M-Gator: Military Gator
MILES: Multiple Integrated Laser Engagement Simulator
MoHSM: mobile heat stress monitor
MOLLE: Modular Lightweight Load-Carrying Equipment
MOMRP: Military Operational Medicine Research Program
MOPP: Mission-Oriented Protective Posture (gear)
MOUT: Military Operations on Urban Terrain
MRE: Meals, Ready to Eat
MRI: magnetic resonance imaging
MRMC: US Army Medical Research and Materiel Command
MRS: magnetic resonance spectroscopy
MyWIDA: My Weather Impacts Decision Aid
NAA: N-acetylaspartate
NAMRL: Naval Aviation Medical Research Laboratory
NASA: National Aeronautics and Space Administration
NETPR: Neurotoxin Exposure Treatment (Parkinson's) Research
NHP: nonhuman primate
NHTSA: National Highway Traffic Safety Administration
NIDDK: National Institute of Diabetes and Digestive and Kidney Diseases
NIH: National Institutes of Health
NS: number of repeated exposures
NWS: National Weather Service
OS: oculus sinister (pertains to the left eye)
OSHA: Occupational Safety and Health Administration
OTC: over the counter
OTV: outer tactical vest
PB: pyridostigmine bromide
PBPK: physiologically based pharmacokinetic (model)
PC: personal computer
PDA: personal digital assistant
PECS: Physical conditions, Emotional state, Cognitive capabilities, and Social status
PB: pseudofolliculitis barbae
PHC: US Army Public Health Command (formerly CHPPM [US Army Center for Health Promotion and Preventive Medicine])
PIES: Proximity to battle (or assigned unit), and Immediately when symptoms were noted, with Expected return to duty within 72 hours, and with Simplicity
PM: Project Manager
PMB: papillomacular bundle
PPE: personal protective equipment
Pr: Prandtl number
PRL: preferred retinal location
PSDA: Probability of Survival Decision Aid
PVM: (Warfighter) Physiological Status Monitor
PTSD: posttraumatic stress disorder
PVT: psychomotor vigilance task
R: radiation heat exchange
RAC: risk assessment code
Ri: long-wave radiation
RCW: Ration, Cold Weather
RDA: Recommended Dietary Allowance
REM: rapid eye movement
RH: relative humidity
RNFL: retinal nerve fiber layer
RPE: retinal pigmented epithelium
Ri: clothing vapor permeability resistance
RTD: resistance temperature device
S: required sweat rate
SSBN: submersible ship ballistic missile, nuclear
SSN: submersible ship, nuclear
STANAG: Standardization Agreement
STRESS: Standardized Tests for Research with Environmental Stressors
SURVIAC: Survivability/Vulnerability Information Analysis Center
SWO: (US Air Force) Staff Weather Officer
SWS: slow-wave sleep

T

T_a: air temperature or dry bulb air temperature
TAP: Toxicological Agent Protective
T_{bg}: black globe thermometer (also substituted globe temperature)
TBI: traumatic brain injury
T_c: core temperature
T_{cl}: mean clothing surface temperature
TGAS: Toxic Gas Assessment Software
TIE: total intraocular energy
TMM: Textbooks of Military Medicine
TNT: trinitrotoluene
T_{nwb}: “naturally aspirated” wet bulb thermometer
T_{op}: operative temperature
T_{h}: humid operative temperature
T_{r}: radiant temperature
TRL: technology readiness level
T_{bs}: body surface temperature or skin/surface temperature
T_{sk}: mean skin temperature
T_{so}: standard operative temperature
T_{soh}: standard humid operative temperature
T_{wb}: wet bulb air temperature

U

URT: upper respiratory tract
USAARL: US Army Aeromedical Research Laboratory
USACHPPM: US Army Center for Health Promotion and Preventive Medicine (US Army Public Health Command)
USAMRD: US Army Medical Research Detachment
USAMRMC: US Army Medical Research and Materiel Command
USARIEM: US Army Research Institute of Environmental Medicine
USDA: US Department of Agriculture
UTC: Universal Time Code
UV: ultraviolet
UVA: ultraviolet light ray A
UVB: ultraviolet light ray B
UVR: ultraviolet radiation

V

VA: (Department of) Veterans Affairs
VV&A: validation, verification, and accreditation

W

WBGT: wet bulb global temperature
WCET: windchill equivalent temperature
WCI: windchill index
WCT: windchill temperature
WDI: wet-dry index
W_c: work
WPSM: Warfighter Physiological Status Monitor
WRAIR: Walter Reed Army Institute of Research
WRE: Weather Running Estimate
INDEX

A
Abbreviated Injury Scale, description and uses, 347
Abraham, P., Early Call sleep studies, 79
Accutane, deployment issues, 252–253
Acne
Accutane use and, 252–253
description, 252
Active strategies for injury control
description, 355, 356–357
deterrence strategies, 369
extrinsic factors and, 368–369
health belief model, 369–370
health locus of control model, 370
intrinsic factors and, 369
social contagion model, 371–372
social learning theory, 370
stage models, 371
theory of reasoned action, 370–371
ADHD. See also specific drugs
sedative effects, 100
uses for, 100
Antioxidant vitamins and minerals
breath pentane sampled at several time periods during field training at moderate altitude (figure), 164
dangers of oversupplementing with, 164
effects on immune function, 163–164
work at altitude and, 163
Antiperspirants, foot blisters and, 321, 326
ARDEC. See Armament, Research, Development, and Engineering Center
Arden, G.B., laser-induced injury studies, 152
Armament, Research, Development, and Engineering Center, collaboration with the US Army Medical Research and Materiel Command and the US Department of Transportation, and the National Institute of Justice, 281–282
Armodafinil, operational use of, 101, 102
Army Health Hazard Assessment program, tank operator and crew survivability, 11
Army Knowledge Online, exhibit describing, 248
ASHRAE. See American Society of Heating, Refrigerating, and Air-Conditioning Engineers
ASHRAE Handbook, 226
ATBM. See Advanced Total Body Model
Athletic injuries. See Sports and athletic injuries
Atmospheric pressure
description, 215
measurement of, 237
Atopic dermatitis
chronic eczema with a numular (coin-shaped) eruption on hands with itching and burning (figure), 258
description, presentation, and treatment, 258
Attention-deficit hyperactivity disorder, pharmacological treatment, 101, 102, 103
Automated Neuropsychological Assessment Metric
description, 26
development of for further use, 27
figure depicting, 26
review of, 28
Aviation, Space, and Environmental Medicine, article on the use of drugs during a combat mission, 95
AVS. See Aidman Vision Screener
high carbohydrate diet, 162
hypoxia effects on thirst and water intake, 192
nutritional requirements, 161–163
sweating, 192
water delivery, 192
water requirements, 191–192
Aly, R., effects of skin occlusion, 246
Ambien. See Zolpidem
AMEDD. See US Army Medical Department
American Society of Heating, Refrigerating, and Air-Conditioning Engineers
new effective temperature calculation, 226
thermal models, 225–226
Amphetamines. See Stimulants; specific drugs
ANAM. See Automated Neuropsychological Assessment Metric
Anxiolytics. See Sedative-hypnotics and anxiolytics; specific drugs
Antihistamines. See also specific drugs
sedative effects, 100
uses for, 100
Aviation, Space, and Environmental Medicine, article on the use of drugs during a combat mission, 95
AVS. See Aidman Vision Screener

xxiii
Military Quantitative Physiology: Problems and Concepts in Military Operational Medicine

B

Bakoff, H., methylphenidate and pemoline studies, 103–104
Backpacks
energy cost of carrying, 311
foot blisters and, 319
load placement issues, 313–314
low back injuries and, 311
pack frames and hip belts and, 312–313, 325
strap adjustments and, 314
Ballistic and Laser Protective Spectacles, description, 133
Bandura, Albert, social learning theory, 370
Barbiturates. See Sedative-hypnotics and antianxiety agents; specific drugs
adverse effects, 97, 99
antianxiety properties, 96, 97
compared with buspirone, 97
compared with melatonin, 100
hangover effects, 99–100
mechanism of action, 96, 97
memory impairment and, 98
military duty and, 98–99
operational scenarios and, 97–98
risks and benefits of use, 99–100
sleep–rest cycle and, 98
uses for, 97, 99
Biomedical models. See Physiological models
Black globe thermometers, description and uses, 233–234
Blast injuries. See also INJURY software; specific body systems
animals, physical surrogates, and mathematical models (figure), 271
blast-effect categories, 268
blast injury taxonomy, 269
Blast Test Device, 277–278, 279
Blowdown curves and, 269, 276
classes of, 268
complication of exposure to nuclear explosions, 282
computational fluid dynamics, 278, 291
dynamic modeling software, 281
example of blast injury data retrieved and displayed using II-SYS software (figure), 282
finite element modeling, 227, 275, 283–285, 288, 292
first-generation injury modeling, 272–278
fourth-generation injury modeling, 288–293
human volunteer study, 280–281
improvised explosive devices and, 268
integrated finite element model of the head, neck, thorax, and abdominal regions (figure), 288
Lobdell model and, 279, 284, 285
mach stem and triple point (figure), 276
mechanism of injury, 272
Military Operational Medicine Research Program and, 271–293
Military Standard 1474 and, 269, 279, 281
modified Lobdell model (figure), 279
occupational limits of blast exposure, 269, 271, 281
overview, 268–272
pattern of injury, 272–273
Physical and Cognitive Performance Modeling Project and, 288
post-World War II research, 269
probabilistic prediction of lung injury (figure), 280
problems addressed, 271–272
research objectives, 269
schematic diagram of circulatory and respiratory systems in the Dynamic Physiology Model (figure), 289
schematic diagram of mechanical response model for binding structures in neurological cells (figure), 293
second-generation injury modeling, 278–283
taxonomy of blast injury (table), 270
third-generation injury modeling, 283–288
torsal loading issues, 276–277
traumatic brain injury, 288–293
ventilation response to acute carbon monoxide exposure (figure), 287
volunteers being exposed to simulated mortar blasts (figure), 281
Z-line and, 271, 275, 279–281
Blast Test Site, Kirtland Air Force Base, blast injury research and, 269, 272, 280–281, 283
BLPS. See Ballistic and Laser Protective Spectacles
Bluestein, M., windchill index and, 47
Body armor
blast effects and, 284–285, 287–288
influence on performance, 325
Interceptor Multipurpose Body Armor System with removable collar, throat protector, and groin protector (figure), 315
load carriage issues, 315
Body composition
body fat prediction algorithms in the 1990s for women in the services (figure), 17
body-fat standards, 17–18
energy requirements and, 170
height and weight studies, 7
load carriage and, 308–309, 316
Boer Wars, load carriage issues, 308
Borbély, A.A., sleep regulation model, 80
Botsford, J.H., equations for wet bulb globe temperature, 45
Brain injuries. See Traumatic brain injury
Breckenridge, J.R., solar load research, 210, 211
BTD. See Blast Test Device
Burton, A.C., clothing insulation requirements, 49
Buspirone
compared with benzodiazepines, 97
compared with zolpidem, 97
mechanism of action, 100
uses for, 100–101
Byrd Amendment
sanctioned use of drugs in the military and, 115, 117–119
special provisions for the military use of drugs (exhibit), 118–119
C
Caffeine
beneficial effects on performance, 110
caffeine-containing gum has been developed and tested in a series of studies and is currently in the DoD supply system (figure), 111
caffeine content of selected beverages and foods (table), 109
effects on mood, 110
effects on performance, 106, 107
Cold exposure. See also Cold environments; Cold strain models; Heat exposure; Thermal environment evaluation; Thermal injuries clothing insulation and, 49
cold-induced diuresis and, 190
cold strain models, 51, 53–55, 71
effects on individual and unit operational capabilities, 51
female soldiers and, 161
frostbite and, 47–49, 54
Generation III Extended Cold Weather Clothing System (exhibit), 191, 215
hypothermia and, 49
increase in total energy expenditure and, 160
indices for, 47–49
metabolic rate increase and, 160
nutrition issues, 159–161
provision of hot drinks and, 191
respiratory water loss and, 190
Six-Cylinder Thermoregulatory Model and, 51
tyrosine studies, 109
vitamin and mineral requirements and, 160
water delivery issues, 191
water requirements, 190–191
windchill index and windchill temperature and, 47–49, 54
Cold-induced vasodilation, description, 54
Cold strain models
assumptions and, 55, 57–60
cold digit compartment models, 54
cold-induced vasodilation, 54
compartment models, 51, 53, 59
dry or terrestrial cold exposure, 55
extremity / digital models, 53
finger-cooling model, 71
high-altitude and, 55
peripheral hypothermia models, 54
uses for, 51
validation of, 60–63
whole-body models, 53, 54
Combat Motivation: The Behavior of Soldiers in Battle (Kellett), 158
Committee on Military Nutrition Research, caffeine recommendations, 111
Compartment models
assumptions concerning, 59
cold strain models and, 51, 53
typical structure of, 59
Computational biology
applications of models, 28–29
criterion measures and militarily relevant endpoints, 16–17
description, 3
fatigue and performance models, 16–17
models for, 16
nomograms and, 9
Computational fluid dynamics, blast injuries and, 278, 291
Conant, R.T., weather forecast studies, 61
Conductance, description, 207
Confocal scanning laser ophthalmoscopy
comparison of range of confocal slice between the Rhesus monkey and the garter snake (figure), 137
counter sensitivity measured using the CSLO technique (figure), 145
counter sensitivity measured using the CSLO technique showed a long-term OD deficit in sensitivity for high-spatial frequency visual stimuli (figure), 145
counter sensitivity test for the preferred retinal location for resolving fine-resolution targets (figure), 147

Index
CSLO image of OD paramacular hole taken after stabilization surgery at 18 months postexposure (figure), 143
description, 137
fixation eye movements recorded at 4 years postexposure for fine-resolution targets (figure), 147
full-hole thickness fundus photograph of the macular hole at 3 months postexposure (figure), 144
fundus photograph (figure), 146
image shows the shift in preferred retinal location for placing fine-resolution targets (figure), 148
imaging of visual function test target placement on a patient’s retina during measurement of contrast sensitivity (figure), 140
large exit port of the designator makes it possible for bilateral exposure at ocular distances of a few centimeters (figure), 148
laser-induced retinal injuries and, 137, 140, 141, 143, 145, 146, 148, 149
macula hole diameter is reduced in size at about 12 months postexposure (figure), 145
Convection
boundary layer and, 208
calculating, 207–208
clothing issues, 206–209
description, 207
pendulum effect and, 208
practical significance of, 207
windchill index and, 208–209
Corbett, D., overview of cold weather dermatology issues, 261
Crimean War, load carriage issues, 304
Croft, A.M., skin disease during deployment in Bosnia, 261
CSLO. See Confocal scanning laser ophthalmoscopy
Curcio, C.A., laser-induced retinal injury research, 138, 147
D
Dalen, A., load carriage injuries and, 324
Danielsson, U., frostbite studies, 48
Darier’s disease, description and treatment, 259
Data mining
common reasons for not sharing data (table), 20
data enclaves and, 22
global grid approach, 23–24
information analysis centers and, 22
information technology solutions for managing data, 23–24
preserving and distributing data sets, 20–22
protection against sharing of sensitive or proprietary information, 22
sociological barriers to data sharing, 19–20
DCGS. See Distributed Common Ground System—Army
De Haven, Hugh, injury epidemiology and, 356
DeBakey, M.E., windchill data research, 223
Defense Technical Information Center, data archiving and, 22
Defense Women's Health Research Program, description, 23
Dehydration
cardiovascular system effects, 186
cold environments and, 191
description, 185
effects on physical performance, 186–187
heat tolerance and, 187
symptoms, 185
thermoregulatory effects, 185–186
Desert environments. See also Heat exposure; Tropical environments
skin care in desert operations (exhibit), 252
skin disease during deployments, 260–261
skin protection, 247–248
Dexedrine. See Dextroamphetamine
Dextroamphetamine
compared with methamphetamine, 101
E
Eardrum rupture. See Tympanic membrane
Edholm, O.G., clothing insulation requirements, 49
Effective temperature
description, 44
nomogram for corrected effective temperature for light, indoor clothing (figure), 44
Eichna, L.W., dehydration studies, 182, 186
Eissinger, C., Oxford index and, 45
Electronic data acquisition systems
description, 223–224
limitations of, 224–225
wet bulb globe temperature sensors and, 224, 225
Elliott, L., effects of secobarbital on combat performance, 97
ELIPE. See Emerging Laser Threat Eye Protection program
Emerging Laser Threat Eye Protection program, description, 133
EMS. See Eosinophilia-myalgia syndrome
English, J.C., skin disease during operations in Panama, 260
Environmental Medicine Genome Bank, description, 22
Eosinophilia-myalgia syndrome, tryptophan and, 108
Ephedra
adverse effects, 104
safety concerns regarding, 101–102
Ephedrine
adverse effects, 104
safety concerns regarding, 101–102
Epidemiological triangle
agents, 355
environmental factors, 355
epidemiological triangle: a traditional epidemiological host-environment-agent model (figure), 354
Foot blister. See also Feet
antiperspirants and, 321, 326
causes, 318
complications from, 318
drainage of, 322
friction blister on the feet (figure), 321
friction blisters showing suggested puncture sites to drain the blister (figure), 322
“hot spots” and, 321
other ways of protecting blisters (figure), 323
risk factors, 318–319
skin coverings to prevent, 321–322
sock types and, 321, 326
Spenco insoles and, 319, 326
sudden increases in march intensity and, 319, 321
treatment for, 322
treatment for smaller blisters (figure), 322
Friedl, Col. Karl
effects of reduction in body weight caused by reduced food intake on muscle strength and aerobic capacity, 169
identification of materials of value at the Blast Test Site, 283
treatments for frostbite for exposed faces, 47
psychological effects, 54
skin surface temperature and, 48
windchill index and, 48

G

Gagge, A.P.
humidity measurement, 236–237
initial capability decision aid and, 51
Oxford index and, 45
thermal models, 225–226
Gastrointestinal system
blast injury modeling, 274
gastrointestinal injury resulting from blast (figure), 274
integrated finite element model of the head, neck, thorax, and abdominal regions (figure), 288
liver injury resulting from blast (figure), 273
observed blast injury: GI (figure), 273
Gender factors. See also Women
load carriage, 317
sex differences in energy requirements (exhibit), 170–171
skin disease, 246
summary of energy expenditure studies using doubly labeled water measurements and involving men and women in militarily relevant environments (table), 171
Generation III Extended Cold Weather Clothing System
cold exposure and, 191
description, 215
snow and, 215
GI system. See Gastrointestinal system
Givoni, B.
energy cost of load carriage, 317–318
predicted four-hour sweat rate and, 46
Gleeson, M., effects of antioxidant supplementation on immune function, 163–164
Goldman, R.F.
energy cost of load carriage, 317–318
frostbite studies, 48
Gordon, John, injury epidemiology and, 356
Gould, Dr. Benjamin Apthorp, height and weight studies, 7
Greenleaf, J.E., water intake and sweating studies, 190
Grenada mission, load carriage issues, 304, 305

H
Habek, D., skin disease during deployment in Bosnia, 261
Haddon, William, Jr.
Haddon matrix for injury control, 357, 358–361
injury epidemiology and, 356
10 strategies for injury control, 357–358, 361–368
Haddon matrix for injury control column components, 359–360
description, 358
Haddon matrix illustrated with examples of the Army Safety Center and other Army proponent responsibilities (figure), 358
Haddon matrix of interventions to reduce wartime motor-vehicle crashes (table), 360
proposed third axis for, 360–361
uses for, 358–359
Haddon’s 10 strategies for control of hazards of all types begin to counter damage already done by the environmental hazard, 367
make that which is to be protected more resistant to damage from the hazard, 365
modify relevant basic qualities of the hazard, 364–365
modify the rate or spatial distribution of the release of a hazard from its source, 363–364
prevent the creation of the hazard in the first place, 361–362
prevent the inappropriate release of a hazard that already exists, 362–363
reduce the amount of the hazard brought into being, 362
separate, in time or space, the hazard and that which is to be protected, 364
separate the hazard and that which is to be protected by the interposition of a material barrier, 364
stabilize, repair, and rehabilitate the object of the damage, 367–368
Hand carriage of loads, energy costs of, 315
Hand dermatitis
description and treatment, 259
prevention of hand dermatitis in deployed service members (exhibit), 260
Harvard Fatigue Laboratory
amphetamine use research, 10
D.B. Dill and his favorite experimental tools (figure), 9
description, 9
40-40-40 Club, 11
mobilization to military research activities, 9–11
Haslam, D.R., Early Call sleep studies, 79
Head carriage of loads, benefits and risks of, 311
Health belief model, description and uses, 369–370
Health Hazard Assessment Program, blast injury and, 280
Health Insurance Portability and Accountability Act, data sharing and, 22
Health locus of control, description and uses, 370
Heat exposure. See also Cold exposure; Desert environments; Thermal environment evaluation; Thermal injuries; Tropical environments

clothing issues, 189, 190, 191
effective temperature and, 44
fluid requirements, 189–190
heat strain models, 49–51, 57–60, 62
heat strain tables, 12
inclusion of carbohydrates in rehydrating fluids, 163
nutritional effects, 163
skin protection and, 240
water delivery issues, 190
Heat strain models
assumptions and, 55, 57–60
body armor effects, 315
compartment models, 59
Distributed Common Ground System—Army and, 50–51
drawbacks to, 50
family of thermal stress monitoring systems proposed by USARIEM (table), 62
graphic representation of the risk of heat injury generated by the Integrated Weather Effects Decision Aid (figure), 58
implementation of, 50
Integrated Weather Effects Decision Aid and, 51, 58
MERCURY/OMEGA system and, 50–51, 54
mobile heat stress monitor, 50
mobile heat stress monitor guide (exhibit), 52–53
pocket calculator for, 50
predicted casualty rate and, 60
SCENARIO, 51, 56–57, 63
strengths of, 49–50
summary comparisons between mean measured and predicted core temperatures from different heat studies (figure), 57
uses of, 50
validation of, 60–63
Hegge, Frederick
data preservation and, 23
Defense Women’s Health Research Program and, 23
task-embedded neuropsychological assessment, 26
Warfighter Physiological Status Monitor and, 24
Helmets. See Protective clothing and equipment
Henderson, Lawrence J., Harvard Fatigue Laboratory and, 9
Hepburn, N.C., skin disease during Operation Desert Shield, 260
HHA. See Health Hazard Assessment Program
Hidradenitis suppurativa
clinical features, 253
deployment issues, 257
environmental conditions and, 253
HIPAA. See Health Insurance Portability and Accountability Act
Historical background
blast injuries, 268–272
body composition studies of US male soldiers in various eras (figure), 7
brief history of rations (exhibit), 166–167
Civil War, 3, 6–9
during World War II, troops slept under mosquito netting (figure), 261
importance of food in military operations, 158–159
injuries in recent conflicts and wars, 347
laser-induced retinal injuries, 130, 131–135
load carriage, 304–309
military coffee use through the eras (exhibit), 115–117
composites and slide rules are graphical analog computational devices that were common tools before the advent of electronic computers (figure), 8
Operation Overlord (exhibit), 220–221
performance-maintaining and performance-enhancing drugs and food components, 94–95
sleep studies, 79–80
thermal models and indices, 43–49
World War I, 7
World War II, 9–11
Holmér, I., required clothing insulation index and, 49
Hoyt, Reed
energy metabolism studies, 170
vitamins’ role in physical performance, 165
wearable physiological sensors and, 24
HSDA models. See Heat strain models
Human Genome Project, data sharing and, 20, 22
Humidity
aspirated psychrometers and, 237
challenges in measuring, 236
cold environments and, 247

demonstration of the relationship between measurements of air
temperature and relative humidity (figure), 217
description, 236
dew-point thermometers and, 237
hydration issues, 189
measurement of, 236–237
skin diseases and, 246, 247–248
sling psychrometers and, 236–237
thermal environment evaluation and, 216–217
wet bulb globe temperature and, 236–237
Hydration issues
barriers to rehydration, 193–194
biomechanics of thirst, 183–184
body size and gender, 188
carbonated drinks, 196
changes in body weight of one researcher during a day in the
desert (figure), 195
clothing, 189, 190, 191, 197
cold environments, 190–191
criteria and dietary reference intake values for total water (table), 184
daily water requirements, 182
dangers of dehydration, 182
dehydration, 185–187
distribution of water in the body, 182–183
drink temperature, 196–197
education soldiers about, 197
E.F. Adolph stands alongside a military jeep in the desert in
1943 (figure), 182
environment, 188
estimates of daily sodium requirements for varied weather con-
ditions and energy expenditures (figure), 194
estimates of daily water requirements for range of environmen-
tal conditions and energy expenditures (figure), 189
estimates of minimal daily water losses and production (table), 183
factors influencing daily water requirements, 188–189
fluid replacement and work/rest guidelines for warm weather
training conditions (table), 196

gastric emptying, 194
Generation III Extended Cold Weather Clothing System (ex-
hibit), 191
hands-free drinking (figure), 193
high altitudes, 191–192
high humidity, 189
hot environments, 189–190
hydration status has been a key variable in USARIEM field nu-
trition studies (figure), 163
hydration-sustaining strategies, 194–197
hyperhydration, 187–188
inclusion of carbohydrates in rehydrating fluids, 163
load carriage, 189
lost solutes, 194
making time to drink, 195
minimizing body water losses, 197
nutrient-on-the-move delivery system attached to standard
Army hydration devices (figure), 195
palatability of water, 193–194, 195–197
physical activity, 188
physiological consequences of body water imbalance, 185–188, 197
role of unpleasant oral sensations in thirst, 184–185
skipping meals, 194–195
sodium depletion, 188
sweating, 183, 190, 192
thirst and satiation, 183–185
US Army Air Force personnel in Tunisia consuming their ra-
tions from defensive positions (figure), 195
water availability, 193
water delivery issues, 190, 191, 192
water-electrolyte balance, 182–183
water immersion, 193
World War II soldier using a steel helmet to hold water and to
bathe (figure), 183
Hyperhydration
effects of overdrinking, 187
prevention, 188
symptoms and etiology, 187–188
water intoxication or hyponatremia, 187

Hypnotics. See Sedative-hypnotics and antianxiety agents; specific
drugs

I
IACs. See Information analysis centers
ICD-9-CM. See International Classification of Diseases, Ninth Revision,
Clinical Modification
ICDA. See Initial capability decision aid
IEDs. See Improvised explosive devices
Immune function, nutrition issues, 163–164, 171, 174
Impairment, definition, 74
Improvised explosive devices
estimated deaths in Iraq from, 268
traumatic brain injury and, 289, 291
Impulse noise
acoustic hazard standards, 15
World War II studies, 11
Infantry Combat Developments Agency, “load echeloning” con-
cept and, 306
Information analysis centers, data storage and, 22
Initial capability decision aid
description, 51
thermal prediction model (exhibit), 56–57
Injury control. See also specific types of injuries
accident concept, 342
active strategies, 355–356, 368–372
after tragedy, relief in Oklahoma City (figure), 366
costs associated with injuries, 340

crashworthy fuel systems (figure), 363
“designed to crash,” the UH-60 Black Hawk helicopter was de-
veloped to the military’s specifications with consideration of
the decades of crash data and to maximize survivability on
impact (figure), 365
destruction of antipersonnel mines (figure), 362
environmental hazards, 349
epidemiological triangle: a traditional epidemiological host-
environment-agent model (figure), 354
epidemiological triangle and, 353–355
estimates of injuries among military personnel, 340
goal of, 353–354
Haddon matrix, 357, 375
Haddon’s 10 strategies for injury control, 357–358, 361–368, 375
health promotion interventions, 369–372
injury classification, 342–344
“injury” definition, 340–342, 375

xxix
injury incidence in the Army (figure), 340
injury risk after redeployment, 351–353
injury severity determination, 347
intentional versus unintentional injuries, 344–346
in the military, 353–357
International Classification of Diseases, Ninth Revision, Clinical Modification and, 343–344
intervention strategies, 355–357
lessons of history (exhibit), 372
long-range management of injury, 374–375
long-term care needs (exhibit), 374
management of injuries in the field and access to care, 372–375
medium-range management of injury, 374
military environment and, 340, 347–353
military personnel exposed to open air testing (figure), 344
Navy rates of aviation fatalities (figure), 353
parachute landing fall allows the jumper to distribute the energy across five separate body regions rather than one (figure), 363
passive strategies, 355, 356–357, 368
peacetime injuries and unit readiness (exhibit), 348
physical training exercises (figure), 366
pioneers in injury epidemiology (exhibit), 356
planning injury prevention programs, 357–372
postwar injury mortality, 352
potential explanations for the association between deployment and increased risk of injury (figure), 352
psychiatric conditions and, 349, 351
reasons why injuries receive too little attention from commanders, 341–342
risk compensation and, 357
severity scales used to classify general trauma (table), 346
short-range management of injury, 373
South Vietnam—medical evacuation patients on the deck of the amphibious assault ship USS *Tripoli* await transfer to the 22nd Casualty Station in Danang from which they will be sent to the States (figure), 373
special environmental circumstances, 347–351
sports and athletic injuries, 351
stress and, 349, 351
this Air Force technician is outfitted in full protective gear as he checks the fins of a sidewinder missile (figure), 364
troop transportation issues, 343
unintended consequences and, 357
US Army UH-60 Medical Evacuation (MEDEVAC) helicopter lands on the USS *New Orleans* during a joint-service, mass-casualty exercise held in Somalia during Operation Restore Hope (figure), 367
various methods of energy transfer and the injuries that may result from them (table), 343
weapons issues, 348–349
weather watchers give parachute training the all clear (figure), 361
worldwide hospitalization, US Army, 1995 (table), 341
Injury Severity Score, description and uses, 347

INJURY software
description, 3
effects of multiple exposures, 279
full coupling to the Blast Test Device, 279
INJURY correlation of lethality, blast overpressure (figure), 291
INJURY software, version 8.2, used to estimate lung injury from blast exposure (figure), 285
maintenance and followup issues, 27 peer review and, 28
pleural surface model, 276
probabilistic prediction, 279
replacement of the Z-line and, 275, 279–281
spiral development of, 24
total work on the lung and, 278
version 8, 285
versions 1.0 to 4.3, 275–276
versions 5.0 to 7.1, 278–279
whole-body loading and, 278–279

Institute of Medicine
Committee on Military Nutrition, environmental stress and nutrient requirements, 159
dietary reference intakes for water, 182

Instruments and methods for measuring parameters of the thermal environment
air temperature, 231
altimeters, 237
barometers, 237
comparison of air-to-ground temperatures measured at two heights to ground temperature at the US Marine Corps Mountain Warfare Training Center, California (figure), 231
electronic sensors, 235–236
humidity measurement, 236–237
precipitation measurement, 237–238
pressure and altitude measurement, 237
radiation measurement instruments, 233–234
surface temperature, 231–232
temperature measurement instruments, 232–233
wind speed measurement, 234–235

Integrated Individual Fighting System, description, 311
Integrated Weather Effects Decision Aid
description, 51
graphic representation of the risk of heat injury generated by the Integrated Weather Effects Decision Aid (figure), 58
operational use of, 63
Interceptor Multipurpose Body Armor System
depiction of soldier wearing (figure), 315
description and uses, 315
Interim Total Body Model
development of, 281–282
skull fracture criterion and, 284

International Classification of Diseases, Ninth Revision, Clinical Modification
coding and, 343–344
compared with STANAG, 345–346
injury research using hospitalization files: coding for high-quality research (exhibit), 344
Injury Severity Score and, 347
STANAG codes and, 344

Iphicrates of Ancient Greece, load carriage and, 307–308
Iraq. See Operation Iraqi Freedom
IREQ. See Required clothing insulation index
ISS. See Injury Severity Score
Issekutz, B.J., Jr., short-term nutritional deficiencies, 159
ITBM. See Interim Total Body Model
Ivy, A.C., stimulant studies, 106
IWEDA. See Integrated Weather Effects Decision Aid

Jaycor, Inc. See also INJURY software
blast injury mathematical model development, 272
cellular-based model of the response of the immune system to ionizing radiation and, 282–283
data storage and, 22
lung injury model development and, 275
Toxic Gas Assessment Software and, 286–287
traumatic brain injury models, 291
Jet lag
melatonin and, 100

xxx
stimulants and, 106
tryptophan and, 108
JNLWD. See Joint Non-Lethal Weapon Directorate
Johnson, R.E.
cafeine studies, 110
review of post-World War II reports on military feeding problems, 158
Joint Non-Lethal Weapon Directorate, blast injury modeling and, 281–282, 284
Joint Theater Trauma Registry database, description, 22
Jones, F.D., buspirone use in combat, 100–101
K
Kark, R.M., review of post-World War II reports on military feeding problems, 158
Keeling, J.H., sun protective headgear, 249–250
Kellett, Anthony, Combat Motivation: The Behavior of Soldiers in Battle, 158
Keys, Ancel, Minnesota Starvation Study, 10, 166
Killgore, W. Scott, effects of modafinil, caffeine, and amphetamine on performance, 107
Knee pain, load carriage and, 324
Kornfield, B.W., skin disease during Operation Desert Shield, 260
L
Lader, M., buspirone study, 101
LaGarde, D., effects of modafinil on performance, 105, 106–107
LaPiana, Col. Francis, laser research, 132
Larrey, Baron Dominique Jean, effects of cold on soldiers, 158
Lieberman, H.R., caffeine studies, 109, 111
Lichen planus, description, presentation, and treatment, 258
Lind, A.R., Oxford index and, 45
Lind, A.R., Oxford index and, 45
Lind, A.R., Oxford index and, 45
Live Fire Test Program, blast injury and, 285
Load carriage
ALICE pack and, 310–311
an airman being transported using a two-man carry in a training exercise (figure), 307
an Army relief team carries an Army tent in a box to a waiting truck following a major earthquake on November 23, 1980 (figure), 312
average loads carried by light infantry soldiers during dismounted operations in Afghanistan in April and May 2003 (table), 309
backpacks and, 311–314, 319, 325
body armor and, 315
body stature and body mass and, 308–309
carts for, 315–316, 325–326
double packs and, 311–314, 319, 324
effects of load distribution within the pack on energy cost (figure), 314
effects of terrain on energy cost, 318
foot blisters, 318–319, 321–322, 326
gender differences, 317
hand carriage, 315
heavy loads in military history (exhibit), 305
historical background, 304–309
a “hot spot” on the medial aspect of a soldier’s foot during a road march (figure), 321
influence on performance, 325
injuries among 218 infantry soldiers during a 5-day, 161-km road march (table), 319
injuries among 355 infantry soldiers during a 20-km maximal effort road march (table), 319
knee pain and, 324
load distribution and, 309–311, 326
“load echeloning” concept, 306
loads carried on the march by various infantry unity through-out history (figure), 306
low back injuries and, 311, 324
Marines carry a stretcher bearing a sniper victim on Guadalca-nal in World War II, 313
Mars Task Force mule skinners (2nd Battalion, 475th Infantry Regiment) load mules through the swift river that impeded their progress to Bhamo, Burma, November 17, 1944 (figure), 307
medical problems associated with, 318–325, 326
meralgia paresthetica and, 325
metatarsalgia, 322
methods of load carriage investigated in various studies (figure), 311
MOLLE pack and, 310–311, 326
motorized vehicles for, 316
on feet, 314
on the thighs, 314–315
overview, 304
physical characteristics of soldiers and recruits (table), 310
physical training and, 308, 316–317, 326
physiological and biomechanical aspects, 309–318
physiological factors associated with, 316

Leishmaniasis
clinical diagnoses/reports of leishmaniasis at US military medical treatment facilities and estimated leishmaniasis infection incidence rates among US service members (figure), 262
leishmaniasis is a parasitic infection transmitted to humans from rodents by sand flies (figure), 242
Persian Gulf War incidence, 246, 261
Letterman Army Institute of Research, laser studies, 131–135
Lichen planus, description, presentation, and treatment, 258
Lieberman, H.R., cafeine studies, 109, 111
Lind, A.R., Oxford index and, 45
Live Fire Test Program, blast injury and, 285

Abbreviations and Acronyms
Index
placement of load and, 313–314
Polaris Sportsman Military Vehicle (figure), 317
predicting the energy cost of, 317–318
rifle carriage, 315
rucksack palsy and, 324–325
strap adjustments and, 314
stress fractures and, 323–324, 326
summary of common load carriage-related injuries with prevention and treatment strategies (table), 320
US Army research, 305–307
ways to improve, 325
worst case loads and projected weights because of new technologies (including clothing and personal equipment) for nine US Army light infantry positions (table), 308
Lobdell model, blast injuries and, 279, 284, 285
Lormetazepam, operational scenarios and, 97–98
Lotens, W.A., solar load research, 210
Lotter, C.P.T., pictured wearing a modern prosthetic (figure), 342
Lungs
blast injuries, 274–275, 284
cumulative injury to from blast, 279
effectiveness of blast injury data retrieved and displayed using ILINJURY software (figure), 282
exposure standards for blast injuries, 274
finite element modeling, 284–285
INJURY software, version 8.2, used to estimate lung injury from blast exposure (figure), 285
integrated finite element model of the head, neck, thorax, and abdominal regions (figure), 288
lung contusion levels, 279
lung injury resulting from blast (figure), 275
mechanism of action of, 274–275
pleural surface model of chest–lung interaction (figure), 276
probabilistic prediction of lung injury (figure), 280
schematic diagram of circulatory and respiratory systems in the Dynamic Physiological Model (figure), 289
ventilation response to acute carbon monoxide exposure (figure), 287

M

MAIS. See Maximum Abbreviated Injury Scale
MANPRINT program, description, 29
Maximum Abbreviated Injury Scale, description and uses, 347
Mayo, Elton, Harvard Fatigue Laboratory and, 9
McIntyre, D.A.
- asymmetry of radiation sources and, 218
- Oxford index and, 45
predicted four-hour sweat rate and, 46
McKenzie, R., effects of secoobarbital on combat performance, 97
McMichael, S.R., load carriage research, 308
Medical Surveillance Monthly Report, diagnosis for dermatological diseases, 261
Medications. See Performance-maintaining and performance-enhancing drugs and food components, specific medications
Melatonin
- compared with benzodiazepines, 100
- compared with tryptophan, 108
- compared with zaleplon, zopiclone, and temazepam, 99
dietary supplement use, 100
dosages, 100
half-life, 100
jet lag and, 100
mechanism of action, 100
Meralgia paresthetica, causes and symptoms, 325
MERCUY/OMEGA system
- description, 50
- Integrated Weather Effects Decision Aid and, 51
- schematic diagram of the MERCURY/Ranger Test Bed (figure), 54
Metatarsalgia
- description and treatment, 322
- sites of metatarsalgia (figure), 323
Methamphetamine
- compared with dextroamphetamine, 101
- effects as a fatigue countermeasure, 103
- effects on subsequent sleep, 102
- half-life, 102
- side effects, 102
Methylphenidate
- compared with pemoline, 103–104
- mechanism of action, 101
- physiological effects, 103
- use during the Vietnam War, 94
- uses for, 101, 103
Military Gator
- figure depicting, 316
- US Army soldiers assigned to the 86th Combat Support Hospital using a Military Gator to transport a litter patient at an undisclosed location in Iraq in support of Operation Iraqi Freedom (figure), 316
Military Operational Medicine Research Program
- blast injury research, 268–293
- collaboration with the National Highway Traffic Safety Administration, 282
- key physiology models (table), 4–5
- primary products, 3
- program description, 268
Military Operations on Urban Terrain, need to train on weapons fired from buildings and, 277
Military Standard 1474, blast injuries and, 269, 279, 281
Miller, C.W., nutrient composition of rations in World War I, 159
Minnesota Starvation Study
- data sharing and, 20
- description, 10, 169
- figure depicting, 21
Modafinil
- compared with dextroamphetamine, 105
- mechanism of action, 104
- operational use of, 101, 102, 105, 106, 107
- side effects, 104–105
Modeling of the Non-Auditory Response to Blast Overpressure: Characterization and Modeling of Thoraco-Abdominal Response to Blast Waves, 274
Modular Lightweight Load-Carrying Equipment packs
- description, 310–311, 326
- gender differences in carrying, 317
- soldier wearing the Modular Lightweight Load-Carrying Equipment pack (figure), 313
MOLLE packs. See Modular Lightweight Load-Carrying Equipment packs
MOMRP. See Military Operational Medicine Research Program
Montain, S.J., dehydration studies, 185
Moran, D.S.
- dry or terrestrial cold exposure model, 55
- initial capability decision aid and, 51
- solar load research, 212
Moskowitz, H., buspirone and diazepam study, 101
Motorized vehicles
- load carriage issues, 316
- the Military Gator (figure), 316
- Polaris Sportsman Military Vehicle, 316, 317
US Army soldiers assigned to the 86th Combat Support Hospital using a Military Gator to transport a litter patient at an undisclosed location in Iraq in support of Operation Iraqi Freedom (figure), 316

MOUT. See Military Operations on Urban Terrain

Murlin, Maj. John R., nutritional requirements studies, 7, 159

N

Naitoh, Paul, stimulant studies, 107

NAMRL. See Naval Aviation Medical Research Laboratory

Napping issues

effects of napping on the quality and quantity of subsequent sleep, 87

operational factors, 86

pharmacological substances taken to sustain alertness and, 87

sleep inertia or sleep drunkenness and, 86–87

tactical napping description, 86

waking process, 86

Narcolepsy: pharmacological treatment, 102, 103, 105

NASA. See National Aeronautics and Space Administration

Natick Labs. See also US Army Natick Soldier Research, Development and Engineering Center

clothing issues, 11

National Aeronautics and Space Administration, technology readiness levels, 18–19

National Center for Health Statistics, data collection efforts, 22

National Health and Nutrition Examination Survey, data storage, 22

National Highway Traffic Safety Administration

blast injury research and, 282, 284

Neck biomechanics studies, 14

National Institute of Justice, collaboration with the Armament, Research, Development, and Engineering Center, the US Army Medical Research and Materiel Command, and the US Department of Transportation, 281–282

National Institutes of Health, data sharing, 19–20

National Library of Medicine, Visible Human Project, 279

National Research Council

Committee on Hearing, Bioacoustics, and Biomechanics, blast injury research and, 269, 271

protective clothing studies, 11

NATO STANAG. See North Atlantic Treaty Organization Standardization Agreement 2050

Naval Aviation Medical Research Laboratory, fatigue countermeasure research, 94

Naval Medical Research Laboratory, tyrosine studies, 109

Neck biomechanics, studies of, 13–15

NHTSA. See National Highway Traffic Safety Administration

NIH. See National Institutes of Health

Nishi, Y., humidity measurement, 236–237

Oxford index and, 45

North Atlantic Treaty Organization Standardization Agreement 2050

compared with ICD-9-CM, 345–346

injury coding, 344–346

NATO STANAG trauma codes (table), 345

Nose, H., distribution of water in the body, 183

Not Eating Enough—Overcoming Underconsumption of Military Operational Rations, 174

Nutrition. See also Food constituents

altitude effects, 161–163

antioxidant vitamin and mineral requirements, 163–164

association between nutrition and behavior, 107

basic ration system factors, 164–165

brief history of rations (exhibit), 166–167

carbohydrates’ role in aerobic endurance performance, 165, 167–169

cold exposure and, 159–161

criteria and dietary reference intake values for total water (table), 184

data collection for the 1986 USARIEM field study of MREs (figure), 161

data collection procedures in the 1988 USARIEM field study at the Marine Mountain Warfare Training Center, Pickle Meadows, CA (figure), 162

data collection techniques for the 1990 USARIEM study of carbohydrate supplementation at altitude (figure), 161

effect of a restricted vitamin intake on functional performance in humans (figure), 168

effect of carbohydrates on performance (figure), 172

effect of military field diet on respiratory exchange ratio (figure), 172

effect of several levels of long-term (14-day) carbohydrate intake on the performance of intermittent cycle ergometer work (figure), 168

effect of short-term carbohydrate intakes on the performance of intermittent work (figure), 168

effects on military performance, 158–174

energy provision importance, 169–174

environmental stress and nutrient requirements, 159–174

extreme environments and their influence on physiological function (figure), 160

female soldiers and, 159

generalized relationship between body weight loss and maintenance of strength, based on analyses of several military field studies (figure), 173

generalized relationship between body weight loss and maximal aerobic capacity (figure), 173

grip strength and, 169–170

heat exposure and, 163

historical role of the importance of food in military operations, 158–159

hydration status has been a key variable in USARIEM field nutrition studies (figure), 163

immune function and, 163–164, 171, 174

K ration study, 10

loss of muscle mass and muscle strength and, 171

malnourishment contributed to the misery of Civil War soldiers (figure), 158

Minnesota Starvation Study, 10, 20, 21, 169

muscle glycogen depletion and perceived exertion during strenuous training (figure), 168

respiratory exchange ratio and, 169

sex differences in energy requirements (exhibit), 170–171

sophisticated laboratory metabolic studies have been conducted with the Army at the Pennington Biomedical Research Center in Baton Rouge, Louisiana (figure), 172

sports nutrition and military nutrition comparison, 164–174

strength measurements in USARIEM field studies of Ranger training (figure), 173

stress of military training, oxidative stress, and immune function, 159, 163–164, 171, 174

“stripping” rations and, 165, 167

summary of energy expenditure studies using doubly labeled water measurements and involving men and women in militarily relevant environments (table), 171

types of rations and their functions, 166–167

typical carbohydrate intakes during military field training exercises (figure), 169

vitamins’ role in physical performance, 165

World War I studies, 7

NWS. See US National Weather Service
OCT. See Optical coherence tomography
O' Donnell, V.M., effects of triazolam on performance and sleep, 98
Office of the Surgeon General
load carriage studies and, 306
Minnesota Starvation Study and, 10
Oken, J.S., methylphenidate effects, 103
Operation Desert Shield. See Persian Gulf War
Operation Desert Storm. See Persian Gulf War
Operation Enduring Freedom
average loads carried by light infantry soldiers during dismounted operations in Afghanistan in April and May 2003 (table), 309
load carriage issues, 304, 305, 307
use of go/no-go medications and, 95
Operation Iraqi Freedom, US Army soldiers assigned to the 86th Combat Support Hospital using a Military Gator to transport a litter patient at an undisclosed location in Iraq in support of Operation Iraqi Freedom (figure), 316
Operative temperature, description, 43–44
Optical coherence tomography
description, 138
images show the progression of OD wound healing (figure), 148
laser-induced retinal injuries and, 138, 145, 147, 149
vertical scan through the fovea, OCT image (figure), 138
vertical scan through the fovea (figure), 138
Osczevski, R.J.
frostbite studies, 47, 49
windchill index and, 47
Overdrinking. See Hyperhydration
Oxford index
shortcomings of, 43
uses for, 45
P
Palinkas, L.A., skin diseases during the Vietnam War, 259–260
Pandolf, K.B., energy cost of load carriage, 317–318
Passel, C.F., frostbite studies, 48–49
Passel, C.F., skin disease during Operation Desert Shield, 260
Pemoline
adverse effects, 103
compared with methylphenidate, 103–104
half-life, 103
mechanism of action, 101, 103
uses for, 101, 104
Peneter, D.M., effects of triazolam on performance and sleep, 98
Performance-maintaining and performance-enhancing drugs and food components
alcohol, 94
Byrd Amendment and, 115, 117–119
caffeine, 94, 109–112, 114–115
carbohydrate foods, 112–113
ethical issues, 115–119
food constituents, 107–114
"go/no-go" medication use during aviation missions, 95
the latest version of the ambulatory vigilance monitor with all sensors, output devices, and push buttons identified (figure), 114
overview, 94–95
sedative-hypnotics and antianxiety agents, 95–101
stimulants, 94, 95, 101–107
these technologically advanced aircraft permit long duration missions that push the limits of human endurance, requiring special consideration to fatigue countermeasures for the crew (figure), 94
tryptophan, 108
tyrosine, 108–109
Persian Gulf War
Byrd Amendment special provisions for the military use of drugs (exhibit), 118–119
history of inadequate sleep in Gulf War operations (exhibit), 75
leishmaniasis incidence, 246, 261
load carriage issues, 305
provision of bottled water to combat palatability issues, 194
recreation-related injuries, 351
sequence of events from the 100-hour ground war—friendly fire incident (figure), 75
skin disease during deployments, 260–261
traumatic brain injury data, 289
unintentional injuries and, 347
use of go/no-go medications and, 95
Personal equipment. See also Protective clothing and equipment
load carriage equipment, 29
rifle load carriage issues, 315
Warfighter Physiological Status Monitor, 24
water-cooled vest development, 15
World War II studies, 11
Phenobarbital, duration of action, 97
Phenylpropanolamine
adverse effects, 104
mechanism of action, 104
safety concerns regarding, 101–102
Phillips, P.A., thirst studies, 185
Physical training
load carriage and, 308, 316–317, 326
physical training exercises (figure), 366
Phyiological models
assumptions and, 55, 57–60
“black box” approach, 42
challenges of, 63
computational biology and, 16–19
differences between predicted variables and measured values and, 61
differential equations and, 42
effectiveness of, 64
inflated expectations and “failure” of, 61
iterative process, 24–26
linking models to users, 40
material design options and, 15–16
military uses, 28–29
model development methods, 41
operational use of, 63
parametric multiple regression techniques and, 41
peer review and, 28
prevalence of, 40–41
products and software applications for, 41
project management and, 63–64
psychological testing (figure), 26
representations for, 41
responsibilities to maintain, improve, and supervise use of, 26–27
spirul development, 24–26
strategies for formulating, 41–42
technical problems and, 63
testing in realistic environments, 18–19
transitioning to use, 24–29
US Army computational biology applications, 28–29
uses of, 12–16
validation, verification, and accreditation, 27–28, 58, 60–63
S

Schnakenberg, Col. (Ret.) David D., comments on military rations, 254–255
Scenariog, Col. (Ret.) David D., comments on military rations, 174
SCENARIo model
description, 51
initial capability decision aid and, 51
initial capability decision aid thermal prediction model (exhibit), 56–57
operational use of, 63
Schissel, D.J.
cost savings of intratheater dermatology support to deployed units, 262
sun protective headgear, 249
Schmeisser, E., laser-induced injury studies, 152
Schneider, M., use for second generation blast injury modeling, 282
Second generation blast injury modeling
Advanced Total Body Model development, 282, 284–285
cellular-based model of the response of the immune system to ionizing radiation and, 282–283
closing of the Blast Test Site, 283
combined injury modeling, 282–283
INJURY software, versions 5.0 to 7.1, 278–279
interagency collaboration, 281–282
Interim Total Body Model development, 281–282, 284
Joint Non-Lethal Weapon Directorate and, 281–282
replacement of the Z-line in Military Standard 1474, 279–281
secondary blast injury modeling, 281–282
tertiary blast injury modeling, 282
Sedative-hypnotics and antianxiety agents. See also Sleep issues;
specific drugs
antihistamines, 100
benzodiazepines and related compounds, 97–100
buspirone, 100–101
Marines sleeping on a transport aircraft (figure), 96
mechanism of action, 96
melatonin, 100
uses for, 95–96
Seidel, W.F., effects of triazolam and flurazepam on sleepiness, performance, and mood, 98
Shapiro, Y., solar load research, 212
Shappell, S., methamphetamine effects on performance, 102–103
Ship operations, effect of skin disease on, 259
Shlitzer, A., cold strain model, 54
Shoulder biomechanics, studies of, 13
Siple, P.A., frostbite studies, 48–49
Six-Cylinder Thermoregulatory Model
description, 51, 54
Probability of Survival Decision Aid and, 72
water immersion models and, 72
Skin cancer
battle dress uniforms and, 246
benign neoplasms are the second most frequent dermatological cases in recent deployments (figure), 240
prevention of, 245–246
recreational and occupational exposure to sunlight and, 245
types of, 243, 245
vitamin D versus skin cancer (exhibit), 244–245
Skin care and protection
atopic dermatitis (chronic eczema) with a numular (coin-shaped) eruption on hands with itching and burning (figure), 258
benign neoplasms are the second most frequent dermatological cases in recent deployments (figure), 240
climate and, 246
clinical diagnoses/reports of leishmaniasis at US military medical treatment facilities and estimated leishmaniasis infection incidence rates among US service members (figure), 262
clothing properties are tested on a thermal manikin (figure), 251
commanders’ role in, 263
contact dermatitis on the foot of a 29-year-old seaman aboard ship (figure), 259
dermatology information available through Army Knowledge Online (exhibit), 248
during World War II, troops slept under mosquito netting (figure), 261
effect of skin disease on operations during deployment, 259–261
factors that affect skin disease (table), 247
factors that contribute to skin disease during deployment, 246–247
general care recommendations, 243–246
general EPA guidelines for protective measures against overexposure to UVR based on the UVI (table), 254–257
granulomatous tattoo reaction in a deployed 34-year-old military contractor (figure), 241
heat injuries and, 240
inexperienced care providers and, 240
leishmaniasis is a parasitic infection transmitted to humans from rodents by sand flies (figure), 242
melanin role, 242
overview, 240–241
percentage of UVA and UVB transmission and UPF values for three camouflage fabrics (table), 247
prevention of hand dermatitis in deployed service members (exhibit), 260
prevention of skin disease for sailors (exhibit), 250
pseudofolliculitis barbae (PFB) is a common form of skin irritation on the face in men with curly hair (figure), 240
psoriasis in a military contractor serving in Afghanistan (figure), 258
sample data sheet of the National Oceanic and Atmospheric Administration (NOAA)/Environmental Protection Agency (EPA) Ultraviolet Index (UVI) forecast for US cities (figure), 256
seasonal variation in ultraviolet index values for Albuquerque, New Mexico (figure), 255
skin and its contribution to health, 241–243
skin care in desert operations (exhibit), 252
skin cleansing and lubrication guidelines, 243
skin disease and medical planning, 261–262
skin diseases affected by deployment, 252–259
skin layers, 241–242
skin protection and skin cancer, 243–246
specialty training and, 261–262
Sun Smart Cards (figure), 257
sunscreen guidelines, 250–251
sweating and, 242
tanning myths, 251–252
teledermatology consultations and, 262
Sleep issues during deployment

- effect of skin disease on operations, 259–261
- factors that contribute to skin disease during deployment, 246–247
- skin disease and medical planning, 261–262
- skin diseases affected by deployment, 252–259
- skin protection, 247–252

Sleep issues. See also Sedative-hypnotics and antianxiety agents

- artillery fire operations simulation, 79
- average daily sleep amounts obtained from soldiers during 58 days of US Army Ranger School (figure), 80
- average daily sleep amounts of military personnel during military exercises conducted at the National Training Center (figure), 80
- benefits of good sleep management, 87–88
- cascade of degradation in sleep deprivation, 74
- commanders’ views of how much sleep their soldiers need, 76–77
- comparison of one-step and two-step model approaches using data obtained from airline pilots (figure), 85
- comparison of the one-step and two-step approaches (figure), 82
- current models, 78–86
- definitions of terms, 74, 87
- Early Call studies, 79
- example of sleep-related guidelines provided to commanders and soldiers (figure), 77
- field sleep measures, 76–78, 87
- focus for future studies, 88
- history of inadequate sleep in Gulf War operations (exhibit), 75
- jet lag, 100, 106, 108
- laboratory sleep measures, 75–76, 87
- limitations of current models, 83, 85–86
- mathematical models for prediction, 78–80, 87
- measuring performance in the field, 78, 87
- measuring sleep and performance, 75–78, 87
- military effectiveness factors, 74
- napping issues, 86–89
- one-step models for, 80–81, 83
- one type of wrist-worn actigraph for the measurement of movement during field operations (figure), 78
- operational context, 74, 76–78, 87
- operational example of interindividual differences and models (exhibit), 84–85
- practical model use, 80–83
- predicting sleep and performance, 78–86
- Psychomotor Vigilance Task, 78, 81
- recovery from chronic sleep deprivation, 85–86
- recovery sleep, 76
- schematic diagram of the general shift, due to active sleep management, from a less safe/effective distribution of soldier capacity to a more safe/effective one (figure), 78
- schematic diagram of the two-process model of sleep regulation and the subsequent fatigue/alertness addition (figure), 82
- schematic representation of the psychological and physical degradation associated with increasing sleepiness (figure), 74
- “sleep” definition, 74, 87
- stages of sleep, 75–76
- studies to investigate the impact of sleep loss on operational effectiveness (exhibit), 79

- tactical use of sleep, 86–89
- two-step models for, 83
- underestimation of fatigue in sleep-deprivation studies, 83
- validation of studies, 83
- wrist-mounted actigraphy, 77, 78
- Sleepiness, definition, 74
- Smiley, A., buspirone and diazepam study, 101
- Smith, A.P., caffeine studies, 109
- Smith, H.R., skin disease during deployment in Bosnia, 261
- Snow
- measurement of, 237–238
- thermal consequences of, 215
- Social contagion model, description and uses, 371–372
- Social learning theory, description and uses, 370
- Sohar, E., carbonated drink studies, 196
- Solar load
- clothing issues, 211, 212
- description, 209
- exhibit concerning, 210–211
- importance of, 210
- solar load for direct solar radiation for a standing figure without clothing (figure), 80
- Solar radiation. See Radiation
- Spenco shoe insoles, foot blisters and, 319, 326
- Speler, H.G., laser-induced injury studies, 152
- Sports and athletic injuries, injury control issues, 351
- Stage models, description and uses, 371
- STANAG. See North Atlantic Treaty Organization Standardization Agreement 2050
- Stanny, R.R., methamphetamine effects on performance, 103
- Stimulants. See also specific drugs
- abuse potential, 104
- comparative effects of stimulants in sleep-deprived soldiers (exhibit), 106–107
- dextroamphetamine, 101, 102–103
- ephedra, 101–102, 104
- ephedrine, 101–102, 104
- fenfluramine, 104
- historical combat use, 94
- mechanism of action, 101
- methamphetamine, 101, 102–103
- methylphenidate, 94, 101, 103
- modafinil, 101, 102, 104–105
- overview, 101–102, 104
- pemoline, 101, 103–104
- phenylpropanolamine, 101–102, 104
- socio-political issues associated with combat use of, 104
- uses of, 10, 101
- Stress fractures
- causes, 323
- risk factors, 323
- symptom of metatarsal stress fracture (figure), 323
- treatment, 323–324
- x-ray films of a metatarsal stress fracture when the patient first presented to the clinician and 3 weeks later (figure), 324
- Strydom, N.B., dehydration studies, 186
- Stuhmiller, Dr. James, physiological models and, 29, 40
- Suicide, posttraumatic stress disorder and, 351
- Suit, Contamination Avoidance, Liquid Protective ensemble, humidity and, 209
- Surface temperature, description and role, 231–232
- Sutton, E.L., metatarsalgia incidence research, 322
- Sweating
- hydration issues, 183, 190, 192
- predicted four-hour sweat rate, 46–47
- skin care and protection and, 242
- skin-wettedness and, 213–214
- thermal environment and, 213–215
Military Quantitative Physiology: Problems and Concepts in Military Operational Medicine

Tanks and armored vehicles
air conditioning systems, 15
health hazard studies, 10–11
Taylor, Capt. H.W., “payload plan” for load carriage, 304
TBI. See Traumatic brain injury
Technology readiness levels
description, 18–19
technology readiness levels and physiological modeling ana-
logs (table), 18
usefulness of, 19
Temazepam
compared with zaleplon, zopiclone, and melatonin, 99
effects on sleep and performance, 99
Temperature measurement instruments
black globe thermometers, 233–234
categories of, 232
ground or soil thermometers, 232
minimum-maximum thermometers, 232
resistance temperature devices, 232
thermistors, 232
thermocouples, 232
wet bulb globe temperature sensors, 233
10 strategies for control of hazards of all types. See Haddon’s 10
strategies for control of hazards of all types
TGAS. See Toxic Gas Assessment Software
Theory of reasoned action, description and uses, 370–371
Thermal environment evaluation. See also Cold exposure; Heat
exposure
acclimatization process and, 213
atmospheric pressure, 215
basic psychrometric chart (figure), 214
biophysical/environmental variables, 209–212
clothing issues, 208–209, 211, 212, 215, 218–219
collaboration with civilian scientists and, 227
common versus special environmental factors, 215
collection of a solar collector to alpine circuses, depressions
that can act as natural solar collectors (figure), 213
cold temperature of the environment and, 216–219
cloth conductance and, 207
convection and, 207–209
demonstration of the relationship between measurements of air
temperature and relative humidity (figure), 217
effect of cloud cover on direct and diffuse solar radiation mea-
sured at the US Marine Corps Mountain Warfare Training
Center, California (figure), 217
electronic data acquisition system and, 223–225
effect of measurements, 216–219
equivalent temperatures and, 43
historical overview of thermal models and indices, 43–49
ehypoxemia and, 15
initial capability decision aid thermal prediction model (ex-
hibit), 56–57
linking models to users, 40
National Weather Service indices and, 45
nomogram for corrected effective temperature for light, indoor
clothing (figure), 44
operative temperature and, 43–44
Oxford index and, 43, 45
personal equipment developments, 15
predicted four-hour sweat rate and, 46–47
safe heat exposure studies, 15
wet bulb globe temperature and, 43, 45
windchill index and, 43, 45, 47–49, 54
World War II studies, 10–11

Thigh carriage of loads, energy costs of, 314–315
Third-generation blast injury modeling
blast effects behind body armor, 284–285, 287–288
Dynamic Physiological Model, 287, 288, 292, 293
finite element modeling, 283–285
INJURY software, version 8, 285
Live Fire Test Program, 285
physiologically based pharmacokinetic models, 286–287
Toxic Gas Assessment Software, 286–287
toxic gas inhalation, 285–287
Thorax. See also Lungs
finite element modeling in blast injury, 284–285
integrated finite element model of the head, neck, thorax, and
abdominal regions (figure), 288
Tikuisis, P., frostbite studies, 47, 49, 54
Toxic Gas Assessment Software, blast injuries and, 286–287
Toxicological Agent Protective ensemble, humidity and, 209
Tracheal injuries
tracheal injury resulting from blast (figure), 274
tracheal-laryngeal injury modeling, 273
Training, Overuse Injury, and Performance model, uses of, 13
Traumatic brain injury
 acceleration effects, 291–292
 biomechanical and physiological response models, 293
 blast-induced, 288–293
 blast TBI mechanisms, 290–293
 causal links, 290
 characterization of blast exposure, 290–291
 deformation of the skull coupled with head acceleration can create regions of high stress concentration within the brain (figure), 292
 electromagnetic pulse, 292–293
 hypoxic effects, 292
 integrated finite element model of the head, neck, thorax, and abdominal regions (figure), 288
 magnetic resonance imaging studies and, 290
 mechanical pathway, 288–289
 mild TBI issues, 289
 pathway of internal disturbances, 291–293
 posttraumatic stress disorder and, 290
 Predictive Model, 288–289, 290
 schematic diagram of mechanical response model for binding structures in neurological cells (figure), 293
 vascular surge, 292

Triazolam
 effects on performance and sleep, 98–99
 half-life, 98

TRLs. See Technology readiness levels

Tropical environments. See also Desert environments; Heat exposure
 effect of skin disease on operations during deployment, 259–260
 skin cleansing and lubrication guidelines, 243
 skin diseases and, 246
 skin protection for tropical deployments (exhibit), 250

Troychock, J., skin cleansing and lubrication, 243

Tryptophan
 compared with melatonin, 108
 eosinophilia-myalgia syndrome and, 108
 mechanism of action, 108
 operational uses, 108
 sedative-like effects, 108

Tympanic membrane
 blast injuries and, 272, 284
 finite element modeling and, 284

Tyrosine
 behavioral effects, 108
 beneficial effects, 108–109
 mechanism of action, 108

U

Upper respiratory tract, tracheal-laryngeal blast injury modeling, 273

URT. See Upper respiratory tract

US Air Force
 Combat Climatological Center climatological summaries, 222
 School of Aerospace Medicine, 94, 99
 this Air Force technician is outfitted in full protective gear as he checks the fins of a sidewinder missile (figure), 364

US and Canadian Joint Action Group for Thermal Indices, wind-chill index and, 47

US Army
 Field Board No. 3 load carriage studies, 306
 Health Hazard Assessment Program, 280
 Infantry Combat Developments Agency, 306
 injury incidence in the Army (figure), 340
 injury incidence pyramid, 340
 Integrated Meteorological System, 222
 US Army UH-60 Medical Evacuation (MEDEVAC) helicopter lands on the USS New Orleans during a joint-service, mass-casualty exercise held in Somalia during Operation Restore Hope (figure), 367
 worldwide hospitalization, US Army, 1995 (table), 341

US Army Aeromedical Research Laboratory, fatigue countermeasure research, 94

US Army Center for Health Promotion and Preventive Medicine, lung injury assessment and, 280

US Army Materiel Command Joint Laser Safety Team, laser research, 130

US Army Medical Department
 role in development, deployment, and use of lasers by the military (exhibit), 131–135
 teledermatology consultations and, 262

US Army Medical Research and Development Command laser research, 130
 skin care recommendations, 243

US Army Medical Research and Materiel Command blast injury research, 268–293
 collaboration with the Armament, Research, Development, and Engineering Center and the US Department of Transportation, and the National Institute of Justice, 281–282

US Army Natick Soldier Research, Development and Engineering Center
 effects of body armor on blast injury, 287–288
 rations studies, 166
 tyrosine studies, 109

US Army Research Institute of Environmental Medicine
 clothing issues, 11
 data collection for the 1986 USARIEM field study of MREs (figure), 161
 data collection procedures in the 1988 USARIEM field study at the Marine Mountain Warfare Training Center, Pickle Meadows, CA (figure), 162
 data collection techniques for the 1990 study of carbohydrate supplementation at altitude (figure), 161
 data preservation and, 23
 heat exposure studies, 15
 heat strain tables, 12
 hydration status has been a key variable in USARIEM field nutrition studies (figure), 163
 models for predicting consequences of exposure to environmental stressors, 49–63
 strength measurements in USARIEM field studies of Ranger training (figure), 173
 thermal models developed by, 225–226
 thermoregulatory models and research, 40–72
 tyrosine studies, 109
 Warfighter Physiological Status Monitor, 24–26

US Corps of Engineers, weather data, 222

US Department of Defense
 body circumference equations, 17–18
 Combat Feeding Directorate, 166
 data preservation efforts, 22
 distribution of pyridostigmine bromide during the Persian Gulf War, 118–119
 laser research, 131, 135
 neck biomechanics studies, 14–15

US Department of Transportation, collaboration with the Armament, Research, Development, and Engineering Center, the US
van der Beek, E.J., vitamins’ role in physical performance, 165
Van Dongen, H.P., sleep studies, 83
Vidmar, D.A., skin disease during cold weather deployments, 247, 259
Vietnam War
blast injuries, 268
recreation-related injuries, 351
skin diseases and, 259–260
suicide risk among veterans, 351
use of amphetamines to enhance performance in combat, 94
Vision injuries. See Laser-induced retinal injuries
Vitamin D
description, 43
role of the skin in synthesis of, 242–243
vitamin D versus skin cancer (exhibit), 244–245
Vogt, J.J., predicted four-hour sweat rate and, 46

W
Wallace, R.F., heat injury studies, 61
Walther Reed Army Institute of Research
blast injuries to the lungs, 274
caffeine studies, 110–111
dextroamphetamine study, 102
Interim Total Body Model testing, 281
laser-induced retinal injury studies, 140
load management system, 77
Warden, Dr. Deborah, traumatic brain injury and, 289
Warfighter Physiological Status Monitor
description, 24
prototype for, 26
Wasserman, G.M., skin disease during Operation Desert Shield, 260
Water Consumption Planning Factors, 190, 191, 192
Water immersion
body heat loss and, 208
cold water immersion tables, 12
convection and, 208–209
effect on water requirements, 193
Six-Cylinder Thermoregulatory Model and, 72
temperature of bodies of water and, 216
Water requirements. See Hydration issues
WBGT. See Wet bulb globe temperature
WCI. See Windchill index
WDI. See Oxford index
Weather issues. See Cold environments; Cold exposure; Desert environments; Heat exposure; Thermal environment evaluation; Tropical environments
Wesenten, N.J., effects of modafinil and caffeine on performance, 105, 111
Wet bulb globe temperature
description, 43
inputting values for, 61–62
shortcomings of, 43
sources for guidance on, 45
Wet-dry index. See Oxford index
Whayne, T.F., windchill data research, 223
Whitmore, J.N., study of zaleplon as a sleep aid, 99
Wild, J.L., cost savings of intratheater dermatology support to deployed units, 262
Wilson, O., frostbite relationship to skin surface temperature, 48
Wind speed measurement
Beaufort Wind Scale (table), 236
cup anemometer, which measures wind speed in a horizontal plane (figure), 235
cup anemometers, 235–236
hot-wire or heated-bead anemometers, 234
mechanical anemometers, 234
wind parameters, 235
wind vanes, 235
Windchill index
calculating the windchill temperature, 45
cold exposure and, 47–49
cold exposure and windchill equivalent temperatures (figure), 47
cold temperature and windchill equivalent temperatures (figure), 47
conversion and, 208–209
criticism of, 47
description, 43
limitations of, 54
local data on, 223
shortcomings of, 43
windchill calculation chart (figure), 48
windchill equivalent temperature and, 47
Women
body fat prediction algorithms in the 1990s for women in the services (figure), 17
daily fluid requirements, 188
Defense Women’s Health Research Program, 23
dietary patterns and nutrition (figure), 26
environmental heat and cold exposure studies, 10–11
environmental heat and cold exposure studies, 10–11
equipment and, 61
iron supplementation and, 159, 161, 162–163, 164
male sex differences in energy requirements (exhibit), 170–171
malnutrition and, 170–171
nutritional considerations, 159, 161, 162–163
nutritional requirements studies, 7
psychological testing (figure), 26
role of nutrition, 159
soldier eating rations in the field (figure), 159
World War I
load carriage issues, 308
men and horses fitted with gas masks, circa 1917–1918 (figure), 345
nutritional requirements studies, 7
psychological testing (figure), 26
role of nutrition, 159
World War II
American soldiers marching to relieve troops encircled in the Ardennes Forest during the Battle of the Bulge (figure), 307
amputees receiving therapy (figure), 342
during World War II, troops slept under mosquito netting (figure), 261
environmental heat and cold exposure studies, 10–11
Harvard Fatigue Laboratory studies, 9–11
impulse noise studies, 11
K ration study, 10
load carriage issues, 304, 305, 306, 309
Marines carry a stretcher bearing a sniper victim on Guadalcanal in World War II, 313
Mars Task Force mule skinners (2nd Battalion, 475th Infantry Regiment) lead mules through the swift river that impeded their progress to Bhamo, Burma, November 17, 1944 (figure), 307
Minnesota Starvation Study, 10
Operation Overlord (exhibit), 220–221
personal equipment studies, 11
role of nutrition, 158–159
use of amphetamines to enhance performance in combat, 94, 106–107

X

Xu, X., cold strain model, 54

Z

Zaleplon
 adverse effects, 99
 compared with zopiclone, temazepam, and melatonin, 99
 mechanism of action, 96
 study of use as a sleep aid, 99
Zecher, J., windchill index and, 47
Zola, Irving, injury prevention comments, 359
Zolpidem
 compared with buspirone, 97
 mechanism of action, 96, 97
 operational scenarios and, 97–98
Zopiclone, compared with zaleplon, temazepam, and melatonin, 99
Zwick, H., laser-induced injury studies, 143, 152

Bottom graphic: US Army Medical Research and Materiel Command, 1994–present. When the command was renamed, a new emblem was created with the caduceus and the words “protect, project, sustain.”